Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Authors
Abstract:
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting financial time series, in recent decades. This challenge has increasingly attracted researchers from different scientific branches such as computer science, statistics, mathematics, and etc. Despite a good deal of research in this area, the achieved success is far from ideal. Due to the intrinsic complexity of financial data in stock market, designing a practical model for this prediction is a difficult task. This difficulty increases when a wide variety of financial factors affect the stock market index. In this paper, we attempt to investigate this problem and propose an effective model to solve this challenge. Tehran’s stock market has been chosen as a real-world case study for this purpose. Concretely, we train a regression model by several features such as first and second market index in the last five years, as well as other influential features including US dollar price, universal gold price, petroleum price, industry index and floating currency index. Then, we use the trained system to predict the stock market index value of the following day. The proposed approach can be used by stockbrokers-trading companies that buy and sell shares for their clients to predict the stock market value. In the proposed method, intelligent nonlinear systems such as Artificial Neural Networks (ANNs) and Adaptive Network-based Fuzzy Inference System (ANFIS) have been exploited to predict the daily stock market value of Tehran’s stock market. At the end, the performance of these models have been measured and compared with the linear classical models, namely, ARIMA and SARIMA. In the comparison phase, these time series data are imposed to non-linear ANN and ANFIS models; then, feature selection is applied on data to extract the more influencing features, by using mutual information (MI) and correlation coefficient (CC) criteria. As a result, those features with greater impact on prediction are selected to predict the stock market value. This task eliminates irrelevant data and minimizes the error rate. Finally, all models are compared with each other based on common evaluation criteria to provide a big picture of the exploited models. The obtained results approve that the feature selection by MI and CC methods in both ANFIS and ANN models increases the accuracy of stock market prediction up to 55 percentage points. Furthermore, ANFIS could outperform ANN in all five evaluation criteria.
similar resources
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Using artificial neural network models in stock market index prediction
Forecasting stock exchange rates is an important financial problem that is receiving increasing attention. During the last few years, a number of neural network models and hybrid models have been proposed for obtaining accurate prediction results, in an attempt to outperform the traditional linear and nonlinear approaches. This paper evaluates the effectiveness of neural network models which ar...
full textModeling Stock Market Exchange Prices Using Artificial Neural Network: A Study of Amman Stock Exchange
Stock market represents an essential part of the economy in the Middle East, it is significant for shareholders and investors to estimate the stock price and select the best trading opportunity accurately in advance. This paper utilizes artificial neural network in the modeling of stock market exchange prices. The network was trained using supervised learning. Simulation was conducted for seven...
full textEVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...
full textStock Market Prediction using Feed-forward Artificial Neural Network
This paper presents computational approach for stock market prediction. Artificial Neural Network (ANN) forms a useful tool in predicting price movement of a particular stock. In the short term, the pricing relationship between the elements of a sector holds firmly. An ANN can learn this pricing relationship to high degree of accuracy and be deployed to generate profits with sufficiently large ...
full textEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
full textMy Resources
Journal title
volume 17 issue 4
pages 89- 102
publication date 2021-02
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023